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Abstract. The generating functions for the number of convex polygons on the square and 
honeycomb lattices are derived rigorously. These functions were found by Guttmann and 
Enting. Their calculation is based on the series expansions up to the 64th order and is 
non-rigorous. The asymptotic form of the mean-squared radius of gyration of n-step convex 
polygons on the square lattice is determined and the critical exponent v is 1. 

1. Introduction 

Convex polygons are defined by Guttmann and Enting (1988b) as self-avoiding poly- 
gons whose number of steps equals the perimeter of their minimal bounding rectangle. 
Any vertical (horizontal) line drawn through the polygon between any two vertices of 
the graph cuts exactly two horizontal (vertical) bonds. Guttmann and Enting enumer- 
ated the number P,, of convex polygons with n steps on the square and honeycomb 
lattices up to n = 64. They determined the precise recurrence relation for P, by 
systematic searching and then obtained the exact solution of the recurrence relation 
in a closed form. Their calculation of the generating function 

02 

P ( x ) =  c P2nX*n 
n = 2  

is non-rigorous because they did not derive the recurrence relation rigorously. 
Recently a method has been developed by Ma and Lin (1988) to calculate the 

number of anisotropic spiral self-avoiding loops. In the present paper we apply the 
method of Ma and Lin to derive rigorously the generating function for the number of 
convex polygons. 

2. Convex polygons on the square lattice 

Consider first a special case of convex polygons as shown in figure 1. The width at 
the top of such a polygon equals the width of the minimal bounding rectangle. The 
generating function for the number G, ,  of convex polygons with vertical height r and 
horizontal width s is 

00 m 

G ( x 2 ,  y ’ )  = Gr,,y2rx2S = Gm 
r , s = l  m = l  
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where 
00 

G, = x Z m  c G,,y2' 
r = l  

(3) 

is the generating function corresponding to all polygons whose width at the top is m. 
By considering the addition of the top row of squares in figure 1, it is easy to show 

that 
m 

G,  = y 2 x 2 m  + y 2  ( m  + 1 - n)Gnx2"-"' 
n = l  

whence 
m + l  

G m + l - ~ 2 G ,  = y 2  1 G , , X ~ ( ~ + ~ - " )  
n = l  

and 

G I = x 2 ( y 2 + y 4 + .  . . )=x2y2 / ( l  - y 2 ) .  

It follows from equation ( 5 )  that 

( 1 - y 2 )  Gm+2 - 2 2  Gm+l + x4Gm = 0. 

The characteristic equation for the recursion relation (7) is 

f ( z )  = (1 -y2)z2-2x2z+x4=0 

z = z* = x2/(1 * y ) .  

and the solution is 

The general solution of equation (7) is 

G, = a z y  + bzr. 

The coefficients a and b are determined from GI and 

G 2 = x 2 G 1 + y 2 ( G 2 +  GIx2)  

(4) 

Figure 1. A convex polygon whose width at the top equals the width of the minimal 
bounding rectangle. 
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or 

G z = x ~ ( ~ + ~ ~ ) G ~ / ( ~  - y 2 )  =x4y2(1 + y 2 ) / ( 1  - Y ~ ) ~ .  ( 1 2 )  

The result is a = b =y2 /2 .  The generating function is 

G = x 2 y 2 ( 1  - x 2 ) [ ( 1  - x ~ ) ~ - Y ~ ] - ' .  

Consider next the second special case of the convex polygons as shown in figure 
2. The top right-hand corner of the minimal bounding rectangle is also a corner of 
the polygon. Notice that the first special case is a subset of the second one. The 
generating function is 

m 00 

H ( x 2 , y 2 ) =  C Hr,,y2'x2" = H,, 
r,s = 1 m = l  

where Hm is the generating function for polygons whose width at the top is m. 
In a similar manner to the derivation of (4 ) ,  we have 

m m  m - l  

Hm = y 2 ~ 2 m  + y2  1 H n + , ~ 2 ( m - r )  + y 2  (m-n)Gnx2"-"'  ( 1 5 )  
n = O  r = l  n = 1  

whence 
m m 

n = O  n = 1  
(16) 2( m + l - n )  H ~ + , - x ~ H ~ = Y *  1 Hm+n+l+Y2 C Gnx 

It follows from (10) and (16) that 

Hm+, - ( 1  +x2 - Y ~ ) H , + ~  +x2Hm = c+zY + c-zlt 
where 

c* = f x 2 y 3 (  1 - x2*y) /2(  1 f y ) .  

f(o) = CO2 - ( 1  + x2 -y2)w + x 2 =  0 
The characteristic equation for the recursion relation (16) is 

I- 
Figure 2. A convex polygon whose top right-hand corner is also the corner of the minimal 
bounding rectangle. 
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and the solution is 

w = w* = f{ 1 + x’ -y2* [ 1 - 2x2- 2y2+ (x’-y’)2]1/2}. (19) 

Notice that (18) and (19) are the same as the equations found by Lin et a1 (1987) 
when they studied anisotropic spiral self-avoiding loops. The general solution of 
equation (17) is 

H,+, = d+z,” + d-z! + ew,” + fw?’ 

d ,  = x’y2( 1 i y - x’)/2( 1 * 2y + y’ - x’). 

(20) 

where 

When x + 0, we have 

H ,  = 0(x2”) z ,  = 0(x2) 

w + = O ( l )  w -  = 0(x2 ) .  

Therefore we have e = O  and 

H I  = d+ + d-+ f 

H2 = d+z+ + d-z- + fw-. 
It follows from (16) that 

H1 - H2 = ( y 2 -  x’) H I  + x2y2  - x4y4/( 1 - y 2 ) .  

Substituting HI and H2 into (23), we have 

f = -2x2y4w-[1 - 2 ~ ~ - 2 ~ ~ + ( ~ ~ - ~ ~ ) ~ ] - ~ .  

Summing over H,, we have 

H =x2y2[1 - 2 ~ ~ - 2 y ~ + ( ~ ~ - y ’ ) ~ ] - ~ / ~ .  

The generating function P(x’,y2) for all convex polygons can be determined by 
the method of Ma and Lin (1988). Each polygon is divided uniquely into two (top 
and bottom) polygons as shown in figure 3 by a broken line. For the top polygon, the 
width at botom equals the width of the corresponding minimal bounding rectangle 

Figure 3. A convex polygon divided into two polygons (top and bottom) by the broken line. 
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(the first special case). The broken line is chosen such that the top polygon has the 
maximum area. It can be shown that 

m 

P ( x 2 ,  y’) = c Pr,sy*rx2s 
r,s = I 

00 m-1 00 m m - 2  

= G + 2  Gm x - ’ ~  H n + p +  Gm G , , x - ’ “ ( m - n - l ) .  (26) 
m = 2  n = l  p = o  m = 3  n = l  

The first term on the RHS corresponds to the special case where the bottom polygon 
reduces to a line. A factor of two in the second term is due to the fact that each 
polygon as shown in figure 3 corresponds one-to-one.with another polygon which is 
obtained from the original one by reflection along the vertical direction. The last term 
corresponds to polygons as shown in figure 4. The factor ( m  - n - 1 )  is the number 
of ways to connect the top and bottom polygons within the same minimal bounding 
rectangle. After a straightforward calculation, we obtain 

where 

When x = y we obtain 
m 

P ( x 2 ) =  P2mX2m 
m = 2  

Figure 4. A convex polygon whose top polygon is wider than the bottom one. The minimal 
bounding rectangle does not contact the two corners at the top side of the bottom polygon. 
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which was first calculated non-rigorously by Guttmann and Enting (1988b). It follows 
from (28) that for large n 

Pn -+ n2"-'[ 1 - 8(2n.rr)-'12+. . .I. (29) 

We denote the sum of the mth power of the spans of all convex polygons with n 
steps in a given lattice direction by D',"'. The mth moment of the caliper size is defined 
by 

(RT)= D',"'/Pn. (30) 

R, = (R;)'I2. (31) 

The radius of gyration is defined by 

For large n one expects (R;) - nmu. 
It follows from (26) and (27) that 

m 2 D',"'x" = S " P , ~ ~  2 r  x 2s l X z y  
n = 2  r , s = l  

= [x2S/S(x2)]"P(x2, y2)1,=, 

= x4( 1 -6xz+ 1 1x4-4x6)( m + 1) !/2"( 1 - 4 ~ ' ) ~ + '  

- 4 ~ ' ( 2 m + 1 ) ! ! / 2 ~ " ( 1 - 4 ~ ~ ) ~ + ~ ' ~ + .  . . . 
For large n, we have 

D ( n m ) = n m + l  2 n - 2m-8 [1-8(2n.rr)-'12+. . .] 
(Ry)  = (n/4)"[1 +O(n-')]. 

The asymptotic form of the radius of gyration is 

(32) 

(33) 

R, = (n/4)[ 1 + O( n-')I (34) 

and the critical exponent v is 1. 
In the special case of m = 1, we have the exact result 

(R,) = n/4. (35) 

Equation (35) follows from the fact that a convex polygon with height r and width s 
can be transformed into a polygon with height s and width r by rotation and therefore 
we have (Rn) = ( r +  s ) /2  = n/4. 

Recently Guttmann and Enting (1988a) calculated the number of self-avoiding 
polygons on the square lattice to 56 steps, and the caliper size to 54 steps. Analysis 
of the generating functions permits the following estimates of the connective constant 
p and the critical exponents (Y and Y: 

p - 2.638 (Y -0.5 v - 0.75. (36) 

The corresponding values for the convex polygons are 

p = 2  a = 4  v = l .  (37) 
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3. Convex polygons on the honeycomb lattice 

Following Guttmann and Enting (1988b), the honeycomb lattice is treated as a square 
lattice with half the vertical bonds missing (the brick wall lattice). We use the same 
procedure and notations as before. They pointed out that the definition of convexity 
(cutting any horizontal or vertical line at most twice) refers to the square lattice 
representation that is used in the algebraic enumeration techniques. This definition 
of convexity has no natural interpretation on the honeycomb lattice. For this reason 
we do not consider the size of convex polygons on the honeycomb lattice. 

Consider first the special case where the width at the top of each polygon equals 
the width of the minimal bounding rectangle. We have ( m  and n are even integers): 

m I.. 

Gn 2( m+2-n )  Gm+,=x4Gm+y2 x 
n = 2  

where 

G2 = x4y2 G4=x8(y2+y4) .  

The recursion relation is ( m  must be even): 

Gm+4 - x4(2+ y2)G,+2 + x'G, = 0. 

The solution is 

G, = x2y2(4+ y')-"'(z,"-' + zY')  

where 

z* = x2[(4+ y 2 y 2 *  y ] / 2  

are the roots of the characteristic equation 

(39) 

(40) 

z4 - x4(2 + y2)z2+ x 8  = 0. (41 1 
The generating function is 

x4y2( 1 - x 4 )  m 

G =  G,= 
m=2 1 -2x4- x4y2+ x ' .  

Consider next the convex polygons whose top right-hand corner is also the corner 
of the minimal bounding rectangle. We have 

m m 

H,+, = x4H, +x2y2  c Hmtnt2+ y 2  G , , x ~ ( ~ + ' - ~ )  
n=O n = 2  

where m and n are even integers. The recursion relation is 

Hm+4 - (1 + x4 - x2y2)  H,,, + x4H,  

= x4y3[z,"(z: - 1 )  -zm(Z? - 1)](4+x2)-1/2. 

The solution of equation (44) is 

Hm+2 = at"'l2+ b+z," + b-z? 

where 

2t = 1 + x4 - x2y2- [( 1 + x4-  xZy2)2-4x4]'/2 

(43) 

(44) 

(45) 



2642 K Y Lin and S J Chang 

= -X4y4t/(1+X2)(1 -2x2+x4-x2y2) 

x4y2[1 - x2 - x4+ x6 - x4y2 k y ( i  + x2 - 3x4+ x6 - x4y2)(4+yz)--1/z~ 
2( 1 + x’)( 1 - 2x2 + x4 - x’y’) 

b, = 

and t is a root of the characteristic equation 

t’ - (1 +x4-x2y2)t + x4 = 0 (46) 

with the property t = 0(x4) for x +O. The generating function is 

m x2y2[ (1 + 4x2/A) - 11 
H = c  H m =  

m = 2  2(1+x2) (47) 

where A = (1 - x2)2 - x2y2. 

integers): 
Finally the generating function of all convex polygons is (m,  n and r are even 

m m m m - 2  

P = G + 2  Gm 1 x-’(‘-~) f Hn+,+ G, G,~-~”(m-n) /2  
m = 2  n = 2  r = O  m = 4  n = 2  

x4y2[ 1 - 2x2 + xzyz + 2x6 - 2x4y2 - x8 + x6y2 - x4y4 - x z y 2 ( ~ ~ ’ )  1/2] 
(48) - - 

(1 + x ~ ) ~ A ’  

where A‘ = (1 + x’)’ - x 2 y 2 .  When x = y we have 

P(x2) = x6[1 -2x2+x4-x8-x4(1 -4x4)1/2][(1 +XZ)(1 -2x2)]-2 

= x6+ 3X1O+ 2Xl2 + 10x14+ 14x16+ 4 0 ~ ~ 8 - t .  . , (49) 

which was first derived non-rigorously by Guttmann and Enting (1988b). 
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